

(.)203

nTT

1

II ou

Les valeurs à connaître (celle du 1^{er} guadrant) :

511

-511 ou 711 6 6

$\int cos(o) = 1$	$\int \cos\left(\frac{\overline{11}}{2}\right) = 0$	$\int \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$	$\left(\cos\left(\frac{11}{3}\right)=\frac{1}{2}\right)$	$\int \cos\left(\frac{11}{6}\right) = \frac{\sqrt{3}}{2}$
[sm(o)=0	$\left(\frac{\pi}{2}\right) = 1$	$lsin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$	$\left(\frac{11}{3}\right) = \sqrt{3}$	$\left(\frac{\pi}{6}\right) = \frac{1}{2}$

-11-2

Les autres valeurs sont à savoir retrouver à partir des précédentes (celles des 3 autres quadrants) :

	$\int \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$	$\int \cos\left(\frac{1}{6}\right) = \frac{\sqrt{3}}{2}$	$\int \cos\left(-\frac{\pi}{2}\right) = 0$
$\int Signarrow \left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$	$\left(\frac{5\pi}{4} \right) = -\frac{\sqrt{2}}{2}$	$\left(sin\left(\frac{1}{6}\right) = -\frac{1}{2} \right)$	$\left(s_{1}, \left(-\frac{\pi}{2}\right)\right) = -1$

Remarque : Le tout pouvant être vérifié à la calculatrice (Attention à bien la mettre en mode : <u>RARIAN</u>)

2) Module et argument d'un nombre complexe

<u>Définition</u> : Soit z = a + ib un nombre complexe et M le point d'affixe Z.

On a donc: $|7| = \sqrt{a^2 + b^2}$

• Un <u>argument</u> de $z \neq 0$, noté $a_{12}(2)$ est <u>une</u> mesure de l'angle orienté $(\vec{u}; \vec{OM})$.

<u>Remarque</u> : Si θ est une mesure de l'angle orienté $(\vec{u}; \vec{OM})$, alors $\theta + 2RT$ avec $R \in T$ est aussi une mesure de cet angle orienté.

<u>Exemple</u>: Si $\theta = \frac{\pi}{4}$, alors on peut aussi donner comme mesure de cet angle: $\frac{9\pi}{4}$, $\frac{-3\pi}{4}$

Exercice :

1) Déterminer le module et un argument de l'affixe des points A, B, C et D du repère ci-contre.

$$|z_A| = \mathcal{X} \qquad |z_B| = \mathcal{Z}_1 \leq |z_C| = \mathcal{Z} \qquad |z_D| = \mathcal{Z}$$
$$\arg(z_A) = \overline{\mathbb{T}} \qquad \arg(z_B) = \overline{\mathbb{T}} \qquad \arg(z_C) = \overline{\mathbb{T}} \qquad \arg(z_D) = \mathcal{Z}$$

$$=\frac{\pi}{\lambda}$$
 $\arg(z_{c})=\pi$ $\arg(z_{D})=$

2) Calculer le module des nombres complexes suivants :

$$z_E = -2 + 4i$$
; $z_F = 3$ et $z_G = -2i$.

$$|Z_E| = |-2+4i| |Z_F| = |3| |Z_G| = |-2i| = \sqrt{(-2)^2 + 4^2} = \sqrt{3^2 + 6^2} = \sqrt{6^2 + (-2)^2} = \sqrt{4 + 16} = \sqrt{3} = \sqrt{4} = \sqrt{2} = 3 = 2$$

Propriétés :

(1)
$$Z\overline{Z} = (a + ib)(a - ib) = a^2 - (ib)^2 = a^2 + b^2 = |z|^2$$

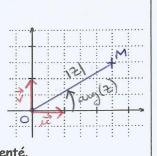
(2) Tout nombre réel strictement positif a un argument égale à 🔾 ou 2TT

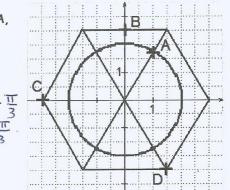
(3) Tout nombre réel strictement négatif a un argument égale à TT eu - TT

- (4) Tout nombre imaginaire pur, de partie imaginaire strictement positive a un argument égale à 🗓
- (5) Tout nombre imaginaire pur, de partie imaginaire strictement négative a un argument égale à

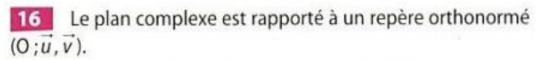
Exercice : Donner une valeur des arguments suivants :

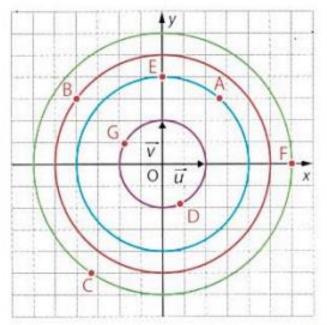
 $\begin{aligned} & \mathcal{Z}_{M_{1}} = -2i & \mathcal{Z}_{M_{2}} = -1 & \mathcal{Z}_{M_{3}} = i & \mathcal{Z}_{M_{4}} = 2 \\ & \arg(-2i) = -\frac{\pi}{2} & \arg(-1) = \frac{\pi}{2} & \arg(i) = \frac{\pi}{2} & \arg(2) = 0 \text{ ou } 2\pi \end{aligned}$ <u>Propriété</u>: Pour tous les points A et B du plan complexe d'affixes Z_A et Z_B ,





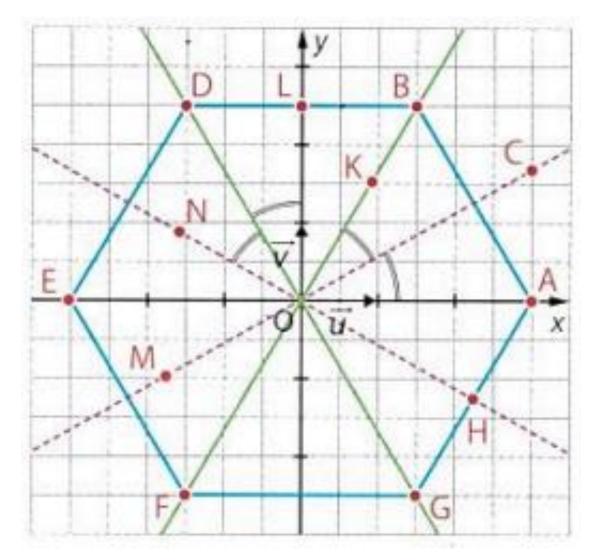
Mi





Lire graphiquement le module de l'affixe de chacun des points A , B, C, D, E, F et G.

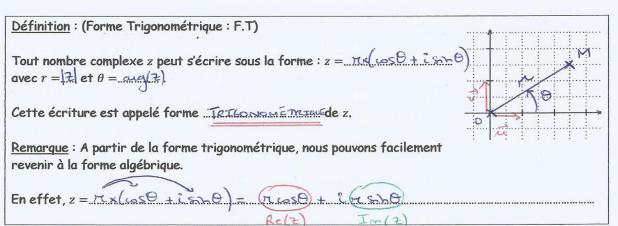
$ z_A =$	$ z_B =$	$ z_{c} =$	$ z_{D} =$
$ z_E =$	$ z_F =$	$ z_G =$	



$arg(z_A) =$	$arg(z_B) =$	$arg(z_C) =$	$arg(z_D) =$
$arg(z_E) =$	$arg(z_F) =$	$arg(z_G) =$	$arg(z_H) =$
$arg(z_K) =$	$arg(z_L) =$	$arg(z_M) =$	$arg(z_N) =$

a) Activition Module et argument du nombre complexe z : z = r $\arg(z) = \Theta$	Placer le point M d'affixe : z	Lire graphiquement : Re(z) et Im(z).	Calculer a et b tels que: $a = r \times cos(\theta)$ $b = r \times sin(\theta)$ $a = \sqrt{8} \times cos\left(\frac{3\pi}{4}\right)$
$ z = \sqrt{8}$ $\arg(z) = \frac{3\pi}{4}$	M 2 Tml.) X 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Re(z) = -2 Im(z) = 2	$a = \sqrt{8} \times \cos\left(\frac{1}{4}\right)$ $= \sqrt{8} \times \left(-\frac{\sqrt{2}}{2}\right)$ $= -2$ $b = \sqrt{8} \times \sin\left(\frac{3\pi}{4}\right)$ $= \sqrt{8} \times \frac{\sqrt{2}}{2}$ $= 2$
$ z = 2$ $\arg(z) = 0$	1 0 2 1 0 2 M 1 2 1 0 1 2 2 M 1 2 2 2 2 2 3 3 4 2 3 4 3 4 4 4 4 4 4 4 4 4 4	Re(z) = 2 $Im(z) = 0$	$a = 2 \times \omega \le (0)$ = 2 × 1 = 2 b = 2 × sin(0) = 2 × 0 = 0
$ z = \sqrt{2}$ $\arg(z) = -\frac{\pi}{4}$		$Re(z) = 1$ $I_m(z) = 1$	$a = \sqrt{2} \times \cos\left(-\frac{\pi}{4}\right)$ $= \sqrt{2} \times \frac{\sqrt{2}}{2}$ $= 1$ $b = \sqrt{2} \times \sin\left(-\frac{\pi}{4}\right)$ $= \sqrt{2} \times \left(-\frac{\sqrt{2}}{2}\right)$ $= (-1)$

b) Définition



Exercice : Déterminer la forme algébrique des nom	ibres complexes suivants : (il suffit de développer)
$z_1 = 3 \times \left(\cos\left(\frac{\pi}{4}\right) + isin\left(\frac{\pi}{4}\right) \right) (F.T)$	$z_2 = 2 \times \left(\cos(3\pi) + i\sin(3\pi)\right)_{(F,T)}$
$= 3 \times \left(\frac{\sqrt{2}}{2} + \frac{2}{\sqrt{2}} \right)$	=2x(-1+ix0)
$=\frac{3\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}i$ (F.A)	= -2 (F.A)
~	
$z_3 = \sqrt{3} \times \left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right) \right)$	$z_4 = \frac{1}{2} \times \left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) \right)$
$= \sqrt{3} \times \left(-\frac{\sqrt{3}}{2} + \frac{2}{2} \times \frac{1}{2} \right)$	$=\frac{1}{2}\times\left(0+i\times1\right)$
$= -\frac{3}{2} + \frac{1}{2}i$ (F.A)	$=\frac{1}{2}i(F.A)$

Pour les exercices 118 et 119, on donne le module et un argument de cinq complexes.

Écrire chacun de ces complexes sous forme algébrique.

119	z	4	√6	2	$\frac{2}{5}$	$\sqrt{2}$
	arg z	$-\frac{\pi}{2}$	$\left -\frac{7\pi}{6} \right $	$\frac{2\pi}{3}$.	$\frac{7\pi}{4}$	$-\frac{\pi}{3}$