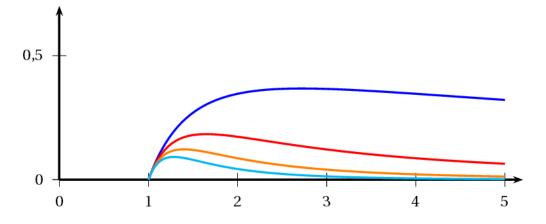
EXERCICE BAC

On considère, pour tout entier n > 0, les fonctions f_n définies sur l'intervalle [1; 5] par :

$$f_n(x) = \frac{\ln x}{x^n}.$$

. Pour tout entier n > 0, on note \mathcal{C}_n la courbe représentative de la fonction f_n dans un repère orthogonal.

Sur le graphique ci-dessous sont représentées les courbes \mathcal{C}_n pour *n* appartenant à {1; 2; 3; 4}.



1. Montrer que, pour tout entier *n* > 0 et tout réel *x* de l'intervalle [1; 5] :

$$f'_n(x) = \frac{1 - n \ln(x)}{x^{n+1}}.$$

2. Pour tout entier n > 0, on admet que la fonction f_n admet un maximum sur l'intervalle [1; 5].

On note A_n le point de la courbe \mathscr{C}_n ayant pour ordonnée ce maximum.

Montrer que tous les points A_n appartiennent à une même courbe Γ d'équation

$$y = \frac{1}{e}\ln(x).$$

3. a. Montrer que, pour tout entier *n* > 1 et tout réel *x* de l'intervalle [1;5] :

$$0 \leqslant \frac{\ln(x)}{x^n} \leqslant \frac{\ln(5)}{x^n}.$$

b. Montrer que pour tout entier n > 1:

$$\int_{1}^{5} \frac{1}{x^{n}} \, \mathrm{d}x = \frac{1}{n-1} \left(1 - \frac{1}{5^{n-1}} \right).$$

c. Pour tout entier n > 0, on s'intéresse à l'aire, exprimée en unités d'aire, de la surface sous la courbe f_n , c'est-à-dire l'aire du domaine du plan délimité par les droites d'équations x = 1, x = 5, y = 0 et la courbe \mathcal{C}_n .

Déterminer la valeur limite de cette aire quand *n* tend vers $+\infty$.